Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Respir Care ; 2023 May 23.
Article in English | MEDLINE | ID: covidwho-20236922

ABSTRACT

BACKGROUND: Prone positioning and neuromuscular blocking agents (NMBAs) are frequently used to treat severe respiratory failure from COVID-19 pneumonia. Prone positioning has shown to improve mortality, whereas NMBAs are used to prevent ventilator asynchrony and reduce patient self-inflicted lung injury. However, despite the use of lung-protective strategies, high death rates in this patient population have been reported. METHODS: We retrospectively examined the factors affecting prolonged mechanical ventilation in patients receiving prone positioning plus muscle relaxants. The medical records of 170 patients were reviewed. Subjects were divided into 2 groups according to ventilator-free days (VFDs) at day 28. Whereas subjects with VFDs < 18 d were defined as prolonged mechanical ventilation, subjects with VFDs ≥18 d were defined as short-term mechanical ventilation. Subjects' baseline status, status at ICU admission, therapy before ICU admission, and treatment in the ICU were studied. RESULTS: Under the proning protocol for COVID-19, the mortality rate in our facility was 11.2%. The prognosis may be improved by avoiding lung injury in the early stages of mechanical ventilation. According to multifactorial logistic regression analysis, persistent SARS-CoV-2 viral shedding in blood (P = .027), higher daily corticosteroid use before ICU admission (P = .007), delayed recovery of lymphocyte count (P < .001), and higher maximal fibrinogen degradation products (P = .039) were associated with prolonged mechanical ventilation. A significant relationship was found between daily corticosteroid use before admission and VFDs by squared regression analysis (y = -0.00008522x2 + 0.01338x + 12.8; x: daily corticosteroids dosage before admission [prednisolone mg/d]; y: VFDs/28 d, R2 = 0.047, P = .02). The peak point of the regression curve was 13.4 d at 78.5 mg/d of the equivalent prednisolone dose, which corresponded to the longest VFDs. CONCLUSIONS: Persistent SARS-CoV-2 viral shedding in blood, high corticosteroid dose from the onset of symptoms to ICU admission, slow recovery of lymphocyte counts, and high levels of fibrinogen degradation products after admission were associated with prolonged mechanical ventilation in subjects with severe COVID-19 pneumonia.

2.
Nat Genet ; 55(5): 753-767, 2023 05.
Article in English | MEDLINE | ID: covidwho-2294568

ABSTRACT

Mechanisms underpinning the dysfunctional immune response in severe acute respiratory syndrome coronavirus 2 infection are elusive. We analyzed single-cell transcriptomes and T and B cell receptors (BCR) of >895,000 peripheral blood mononuclear cells from 73 coronavirus disease 2019 (COVID-19) patients and 75 healthy controls of Japanese ancestry with host genetic data. COVID-19 patients showed a low fraction of nonclassical monocytes (ncMono). We report downregulated cell transitions from classical monocytes to ncMono in COVID-19 with reduced CXCL10 expression in ncMono in severe disease. Cell-cell communication analysis inferred decreased cellular interactions involving ncMono in severe COVID-19. Clonal expansions of BCR were evident in the plasmablasts of patients. Putative disease genes identified by COVID-19 genome-wide association study showed cell type-specific expressions in monocytes and dendritic cells. A COVID-19-associated risk variant at the IFNAR2 locus (rs13050728) had context-specific and monocyte-specific expression quantitative trait loci effects. Our study highlights biological and host genetic involvement of innate immune cells in COVID-19 severity.


Subject(s)
COVID-19 , Leukocytes, Mononuclear , Humans , Genome-Wide Association Study , COVID-19/genetics , Single-Cell Analysis , Immunity, Innate/genetics
3.
Clin Exp Nephrol ; 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2264029

ABSTRACT

BACKGROUND: A certain number of patients with coronavirus disease 2019 (COVID-19), particularly those who test positive for SARS-CoV-2 in the serum, are hospitalized. Further, some even die. We examined the effect of blood adsorption therapy using columns that can eliminate SARS-CoV-2 on the improvement of the prognosis of severe COVID-19 patients. METHODS: This study enrolled seven patients receiving mechanical ventilation. The patients received viral adsorption therapy using SARS-catch column for 3 days. The SARS-catch column was developed by immobilizing a specific peptide, designed based on the sequence of human angiotensin-converting enzyme 2 (hACE2), to an endotoxin adsorption column (PMX). In total, eight types of SARS-CoV-2-catch (SCC) candidate peptides were developed. Then, a clinical study on the effects of blood adsorption therapy using the SARS-catch column in patients with severe COVID-19 was performed, and the data in the present study were compared with historical data of severe COVID-19 patients. RESULTS: Among all SCC candidate peptides, SCC-4N had the best adsorption activity against SARS-CoV-2. The SARS-catch column using SCC-4N removed 65% more SARS-CoV-2 than PMX. Compared with historical data, the weaning time from mechanical ventilation was faster in the present study. In addition, the rate of negative blood viral load in the present study was higher than that in the historical data. CONCLUSION: The timely treatment with virus adsorption therapy may eliminate serum SARS-CoV-2 and improve the prognosis of patients with severe COVID-19. However, large-scale studies must be performed in the future to further assess the finding of this study (jRCTs052200134).

4.
J Clin Immunol ; 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2229665

ABSTRACT

BACKGROUND: COVID-19 is now a common disease, but its pathogenesis remains unknown. Blood circulating proteins reflect host defenses against COVID-19. We investigated whether evaluation of longitudinal blood proteomics for COVID-19 and merging with clinical information would allow elucidation of its pathogenesis and develop a useful clinical phenotype. METHODS: To achieve the first goal (determining key proteins), we derived plasma proteins related to disease severity by using a first discovery cohort. We then assessed the association of the derived proteins with clinical outcome in a second discovery cohort. Finally, the candidates were validated by enzyme-linked immunosorbent assay in a validation cohort to determine key proteins. For the second goal (understanding the associations of the clinical phenotypes with 28-day mortality and clinical outcome), we assessed the associations between clinical phenotypes derived by latent cluster analysis with the key proteins and 28-day mortality and clinical outcome. RESULTS: We identified four key proteins (WFDC2, GDF15, CHI3L1, and KRT19) involved in critical pathogenesis from the three different cohorts. These key proteins were related to the function of cell adhesion and not immune response. Considering the multicollinearity, three clinical phenotypes based on WFDC2, CHI3L1, and KRT19 were identified that were associated with mortality and clinical outcome. CONCLUSION: The use of these easily measured key proteins offered new insight into the pathogenesis of COVID-19 and could be useful in a potential clinical application.

5.
Proc Natl Acad Sci U S A ; 120(4): e2217902120, 2023 Jan 24.
Article in English | MEDLINE | ID: covidwho-2212237

ABSTRACT

Sex-biased humoral immune responses to COVID-19 patients have been observed, but the cellular basis for this is not understood. Using single-cell proteomics by mass cytometry, we find disrupted regulation of humoral immunity in COVID-19 patients, with a sex-biased loss of circulating follicular regulatory T cells (cTfr) at a significantly greater rate in male patients. In addition, a male sex-associated cellular network of T-peripheral helper, plasma blasts, proliferating and extrafollicular/atypical CD11c+ memory B cells was strongly positively correlated with neutralizing antibody concentrations and negatively correlated with cTfr frequency. These results suggest that sex-specific differences to the balance of cTfr and a network of extrafollicular antibody production-associated cell types may be a key factor in the altered humoral immune responses between male and female COVID-19 patients.


Subject(s)
Antibody Formation , COVID-19 , Female , Humans , Male , COVID-19/metabolism , Immunity, Humoral , T-Lymphocytes, Helper-Inducer , T-Lymphocytes, Regulatory , B-Lymphocytes
6.
Clin Case Rep ; 11(1): e6844, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2208923

ABSTRACT

This report described a rare case of subcutaneous anaerobic bacterial abscess due to Peptoniphilus olsenii and Gleimia europaea after COVID-19. The patient received incision and drainage of the abscess and antibiotics, thereby achieving recovery. Immunodeficiency related to COVID-19 and its treatment might contribute to secondary skin and subcutaneous bacterial infections.

7.
Front Immunol ; 13: 830061, 2022.
Article in English | MEDLINE | ID: covidwho-2198803

ABSTRACT

Introduction: Resistin is reported to form a cytokine network and cause endothelial damage. The pathogenesis of coronavirus disease 2019 (COVID-19) remains unknown, but the association between cytokine storm and endothelial damage is crucial. This study aimed to evaluate resistin in COVID-19 pathogenesis compared with sepsis. Materials and Methods: First, we evaluated the association of plasma resistin levels and disease severity and clinical outcome in two large cohorts: a publicly available cohort including 306 COVID-19 patients in the United States (MGH cohort) and our original cohort including only intubated 113 patients in Japan (Osaka cohort 1). Second, to understand pathogenesis, we evaluate resistin, cytokines and endothelial cell adhesion molecules in COVID-19 compared with sepsis. Blood samples were collected from 62 ICU-treated COVID-19 patients and 38 sepsis patients on day 1 (day of ICU admission), days 2-3, days 6-8, and from 18 healthy controls (Osaka cohort 2). The plasma resistin, inflammatory cytokines (IL-6, IL-8, MCP-1 and IL-10) and endothelial cell adhesion molecules (ICAM-1 and VCAM-1) were compared between patients and control. Correlations among resistin, inflammatory cytokines and endothelial cell adhesion molecules were evaluated in COVID-19 and sepsis. Results: In the MGH cohort, the day 1 resistin levels were associated with disease severity score. The non-survivors showed significantly greater resistin levels than survivors on days 1, 4 and 8. In the Osaka cohort 1, 28-day non-survivors showed significantly higher resistin levels than 28-day survivors on days 6-8. Patients with late recovery (defined as the day of weaning off mechanical ventilation >12 or death) had significantly higher resistin levels than those with early recovery on day 1 and days 6-8. In the Osaka cohort 2, plasma resistin levels were elevated in COVID-19 and sepsis patients compared to controls at all measurement points and were associated with inflammatory cytokines and endothelial cell adhesion molecules. Conclusion: Resistin was elevated in COVID-19 patients and was associated with cytokines and endothelial cell adhesion molecules. Higher resistin levels were related to worse outcome.


Subject(s)
COVID-19 , Sepsis , Cytokines , Humans , Resistin , Sepsis/metabolism , Vascular Cell Adhesion Molecule-1
8.
Inflamm Regen ; 42(1): 53, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2139785

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is widespread; however, accurate predictors of refractory cases have not yet been established. Circulating extracellular vesicles, involved in many pathological processes, are ideal resources for biomarker exploration. METHODS: To identify potential serum biomarkers and examine the proteins associated with the pathogenesis of refractory COVID-19, we conducted high-coverage proteomics on serum extracellular vesicles collected from 12 patients with COVID-19 at different disease severity levels and 4 healthy controls. Furthermore, single-cell RNA sequencing of peripheral blood mononuclear cells collected from 10 patients with COVID-19 and 5 healthy controls was performed. RESULTS: Among the 3046 extracellular vesicle proteins that were identified, expression of MACROH2A1 was significantly elevated in refractory cases compared to non-refractory cases; moreover, its expression was increased according to disease severity. In single-cell RNA sequencing of peripheral blood mononuclear cells, the expression of MACROH2A1 was localized to monocytes and elevated in critical cases. Consistently, single-nucleus RNA sequencing of lung tissues revealed that MACROH2A1 was highly expressed in monocytes and macrophages and was significantly elevated in fatal COVID-19. Moreover, molecular network analysis showed that pathways such as "estrogen signaling pathway," "p160 steroid receptor coactivator (SRC) signaling pathway," and "transcriptional regulation by STAT" were enriched in the transcriptome of monocytes in the peripheral blood mononuclear cells and lungs, and they were also commonly enriched in extracellular vesicle proteomics. CONCLUSIONS: Our findings highlight that MACROH2A1 in extracellular vesicles is a potential biomarker of refractory COVID-19 and may reflect the pathogenesis of COVID-19 in monocytes.

9.
Virol J ; 19(1): 198, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2139350

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has led to major public health crises worldwide. Several studies have reported the comprehensive mRNA expression analysis of immune-related genes in patients with COVID-19, using blood samples, to understand its pathogenesis; however, the characteristics of RNA expression in COVID-19 and bacterial sepsis have not been compared. The current study aimed to address this gap. METHODS: RNA-sequencing and bioinformatics analyses were used to compare the transcriptome expression of whole blood samples from patients with COVID-19 and patients with sepsis who were admitted to the intensive care unit of Osaka University Graduate School of Medicine. RESULTS: The COVID-19 and sepsis cohorts showed upregulation of mitochondrial- and neutrophil-related transcripts, respectively. Compared with that in the control cohort, neutrophil-related transcripts were upregulated in both the COVID-19 and sepsis cohorts. In contrast, mitochondrial-related transcripts were upregulated in the COVID-19 cohort and downregulated in the sepsis cohort, compared to those in the control cohort. Moreover, transcript levels of the pro-apoptotic genes BAK1, CYCS, BBC3, CASP7, and CASP8 were upregulated in the COVID-19 cohort, whereas those of anti-apoptotic genes, such as BCL2L11 and BCL2L1, were upregulated in the sepsis cohort. CONCLUSIONS: This study clarified the differential expression of transcripts related to neutrophils and mitochondria in sepsis and COVID-19 conditions. Mitochondrial-related transcripts were downregulated in sepsis than in COVID-19 conditions, and our results indicated suboptimal intrinsic apoptotic features in sepsis samples compared with that in COVID-19 samples. This study is expected to contribute to the development of specific treatments for COVID-19.


Subject(s)
COVID-19 , Sepsis , Humans , COVID-19/genetics , Sepsis/genetics , SARS-CoV-2 , Intensive Care Units , RNA
10.
JCI Insight ; 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2089013

ABSTRACT

Consecutive mRNA vaccinations against SARS-CoV-2 reinforced both innate and adaptive immune responses. However, it remains unclear whether the enhanced innate immune responses are mediated by epigenetic regulation and, if so, whether these effects persist. Using mass cytometry, RNA-seq, and ATAC-seq, we show that BNT162b2 mRNA vaccination upregulated antiviral and IFN-stimulated gene expression in monocytes with greater effects after the second vaccination than those after the first vaccination. Transcription factor-binding motif analysis also revealed enriched IFN regulatory factors and PU.1 motifs in accessible chromatin regions. Importantly, although consecutive BNT162b2 mRNA vaccinations boosted innate immune responses and caused epigenetic changes in isolated monocytes, we showed that these effects occur only transiently and disappear 4 weeks after the second vaccination. Furthermore, single-cell RNA sequencing analysis revealed that a similar gene signature was impaired in the monocytes of unvaccinated COVID-19 patients with acute respiratory distress syndrome. These results reinforce the importance of the innate immune response in the determination of COVID-19 severity but indicate that, unlike adaptive immunity, innate immunity is not unexpectedly sustained even after consecutive vaccination. This study, which focuses on innate immmune memory, may provide novel insights into the vaccine development against infectious diseases.

11.
Acute medicine & surgery ; 9(1), 2022.
Article in English | EuropePMC | ID: covidwho-2058460

ABSTRACT

Background The new coronavirus disease (COVID‐19) causes gastrointestinal symptoms as well as respiratory symptoms. Case Presentation A 60‐year‐old man was transferred with respiratory difficulty. He was diagnosed as having COVID‐19 and was intubated and placed on mechanical ventilation. He suffered from diarrhea from day 12 and produced a maximum of approximately 6,384 mL/day of watery diarrhea on day 21. He required massive transfusion. Adsorbents and pectin‐containing oligomeric formulas were administered, which decreased the amount of diarrhea. Fecal metagenomic analysis showed the proportions of the genera Enterococcus and Staphylococcus were the most dominate at the genus level. The proportion of Bacteroidetes was <1%. Thereafter, his diarrhea decreased to several times, and he was transferred to another ward on day 104. Conclusion Therapy for intestinal complications as well as that for pneumonia might be important in treating COVID‐19. Fecal Gram stain shows that simplified bacteria cover the field instead of normal bacteria. (Upper left) Healthy control. (Upper right) Enterococcus. (Lower left) Fungi. (Lower right) Klebsiella pneumoniae.

12.
Acute Med Surg ; 9(1): e793, 2022.
Article in English | MEDLINE | ID: covidwho-2059279

ABSTRACT

Background: The new coronavirus disease (COVID-19) causes gastrointestinal symptoms as well as respiratory symptoms. Case Presentation: A 60-year-old man was transferred with respiratory difficulty. He was diagnosed as having COVID-19 and was intubated and placed on mechanical ventilation. He suffered from diarrhea from day 12 and produced a maximum of approximately 6,384 mL/day of watery diarrhea on day 21. He required massive transfusion. Adsorbents and pectin-containing oligomeric formulas were administered, which decreased the amount of diarrhea. Fecal metagenomic analysis showed the proportions of the genera Enterococcus and Staphylococcus were the most dominate at the genus level. The proportion of Bacteroidetes was <1%. Thereafter, his diarrhea decreased to several times, and he was transferred to another ward on day 104. Conclusion: Therapy for intestinal complications as well as that for pneumonia might be important in treating COVID-19.

13.
Intern Med ; 61(18): 2797-2801, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2029870

ABSTRACT

A 53-year-old woman with severe coronavirus disease 2019 (COVID-19) pneumonia was admitted and treated with intravenous unfractionated heparin for thromboprophylaxis under general anesthesia with mechanical ventilation. She developed right hemiparesis after hospitalization due to a large hemorrhagic infarction. Her platelet count decreased from 243,000/µL at administration to 121,000/µL. Anti-platelet factor 4-heparin antibody testing was positive according to a latex immunoturbidimetric assay. She was therefore diagnosed with heparin-induced thrombocytopenia. We immediately stopped the heparin and started argatroban; the platelet count recovered, and thrombosis did not relapse. Physicians should consider heparin-induced thrombocytopenia as a cause of ischemic stroke in patients with COVID-19 infection.


Subject(s)
COVID-19 , Ischemic Stroke , Thrombocytopenia , Venous Thromboembolism , Anticoagulants/adverse effects , COVID-19/complications , Female , Heparin/adverse effects , Humans , Ischemic Stroke/etiology , Middle Aged , Thrombocytopenia/chemically induced , Thrombocytopenia/drug therapy , Venous Thromboembolism/drug therapy
14.
Mol Ther Nucleic Acids ; 29: 343-353, 2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-1977695

ABSTRACT

We evaluated mRNA and miRNA in COVID-19 patients and elucidated the pathogenesis of COVID-19, including protein profiles, following mRNA and miRNA integration analysis. mRNA and miRNA sequencing was done on admission with whole blood of 5 and 16 healthy controls (HCs) and 10 and 31 critically ill COVID-19 patients (derivation and validation cohorts, respectively). Interferon (IFN)-α2, IFN-ß, IFN-γ, interleukin-27, and IFN-λ1 were measured in COVID-19 patients on admission (day 1, 181 critical/22 non-critical patients) and days 6-8 (168 critical patients) and in 19 HCs. In the derivation cohort, 3,488 mRNA and 31 miRNA expressions were identified among differentially expressed RNA expressions in the patients versus those in HCs, and 2,945 mRNA and 32 miRNA expressions in the validation cohort. Canonical pathway analysis showed the IFN signaling pathway to be most activated. The IFN-ß plasma level was elevated in line with increased severity compared with HCs, as were IFN-ß downstream proteins, such as interleukin-27. IFN-λ1 was higher in non-critically ill patients versus HCs but lower in critical than non-critical patients. Integration of mRNA and miRNA analysis showed activated IFN signaling. Plasma IFN protein profile revealed that IFN-ß (type I) and IFN-λ1 (type III) played important roles in COVID-19 disease progression.

15.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1918620

ABSTRACT

Introduction Resistin is reported to form a cytokine network and cause endothelial damage. The pathogenesis of coronavirus disease 2019 (COVID-19) remains unknown, but the association between cytokine storm and endothelial damage is crucial. This study aimed to evaluate resistin in COVID-19 pathogenesis compared with sepsis. Materials and Methods First, we evaluated the association of plasma resistin levels and disease severity and clinical outcome in two large cohorts: a publicly available cohort including 306 COVID-19 patients in the United States (MGH cohort) and our original cohort including only intubated 113 patients in Japan (Osaka cohort 1). Second, to understand pathogenesis, we evaluate resistin, cytokines and endothelial cell adhesion molecules in COVID-19 compared with sepsis. Blood samples were collected from 62 ICU-treated COVID-19 patients and 38 sepsis patients on day 1 (day of ICU admission), days 2-3, days 6-8, and from 18 healthy controls (Osaka cohort 2). The plasma resistin, inflammatory cytokines (IL-6, IL-8, MCP-1 and IL-10) and endothelial cell adhesion molecules (ICAM-1 and VCAM-1) were compared between patients and control. Correlations among resistin, inflammatory cytokines and endothelial cell adhesion molecules were evaluated in COVID-19 and sepsis. Results In the MGH cohort, the day 1 resistin levels were associated with disease severity score. The non-survivors showed significantly greater resistin levels than survivors on days 1, 4 and 8. In the Osaka cohort 1, 28-day non-survivors showed significantly higher resistin levels than 28-day survivors on days 6-8. Patients with late recovery (defined as the day of weaning off mechanical ventilation >12 or death) had significantly higher resistin levels than those with early recovery on day 1 and days 6-8. In the Osaka cohort 2, plasma resistin levels were elevated in COVID-19 and sepsis patients compared to controls at all measurement points and were associated with inflammatory cytokines and endothelial cell adhesion molecules. Conclusion Resistin was elevated in COVID-19 patients and was associated with cytokines and endothelial cell adhesion molecules. Higher resistin levels were related to worse outcome.

16.
BMC Infect Dis ; 22(1): 572, 2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1910275

ABSTRACT

BACKGROUND: The impact of SARS-CoV-2 infection on the gut fungal (mycobiota) and bacterial (microbiota) communities has been elucidated individually. This study analyzed both gut mycobiota and microbiota and their correlation in the COVID-19 patients with severe and mild conditions and follow-up to monitor their alterations after recovery. METHODS: We analyzed the gut mycobiota and microbiota by bacterial 16S and fungal ITS1 metagenomic sequencing of 40 severe patients, 38 mild patients, and 30 healthy individuals and reanalyzed those of 10 patients with severe COVID-19 approximately 6 months after discharge. RESULTS: The mycobiota of the severe and mild groups showed lower diversity than the healthy group, and in some, characteristic patterns dominated by a single fungal species, Candida albicans, were detected. Lower microbial diversity in the severe group was observed, but no differences in its diversity or community structure were detected between the mild and healthy groups. The microbiota of the severe group was characterized by an increase in Enterococcus and Lactobacillus, and a decrease in Faecalibacterium and Bacteroides. The abundance of Candida was positively correlated with that of Enterococcus in patients with COVID-19. After the recovery of severe patients, alteration of the microbiota remained, but the mycobiota recovered its diversity comparable to that of mild and healthy groups. CONCLUSION: In mild cases, the microbiota is stable during SARS-CoV-2 infection, but in severe cases, alterations persist for 6 months after recovery.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Microbiota , Enterococcus , Feces/microbiology , Humans , SARS-CoV-2
17.
Int J Infect Dis ; 116: 255-257, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1757401

ABSTRACT

Messenger RNA (mRNA) vaccines that protect against COVID-19 are widely used in many countries owing to their high efficacy and safety profiles. Recently, few severe adverse events, such as anaphylaxis and myocarditis, were reported in healthy individuals. The safety of mRNA COVID-19 vaccines has not been adequately studied in patients with interstitial lung disease. We report 2 cases of acute exacerbation of preexisting interstitial pneumonia associated with mRNA COVID-19 vaccination. In both cases, lung disease was stable before the vaccination. Initial responses to steroid therapy were unfavorable, and intravenous cyclophosphamide was administered in both cases. Both patients were diagnosed with vaccine-related exacerbation of interstitial pneumonia based on laboratory results, radiologic features, and the observed clinical course, which lacked other causative events. We suggest that clinicians should note the possibility of acute exacerbation of pneumonia after mRNA COVID-19 vaccination and carefully monitor patients with interstitial lung disease.


Subject(s)
COVID-19 , Lung Diseases, Interstitial , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/etiology , RNA, Messenger/genetics , SARS-CoV-2 , Vaccination/adverse effects
18.
Clin Case Rep ; 10(2): e05463, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1680285

ABSTRACT

This is the first report of COVID-19 in a human T-cell lymphotropic virus type-1 (HTLV-1) carrier. HTLV-1 infection can cause immune dysfunction even in asymptomatic carriers. This case highlights the need for guidance on management of COVID-19-HTLV-1 coinfection, specifically on the appropriate use of corticosteroid treatment while considering secondary infection.

19.
Frontiers in immunology ; 12, 2021.
Article in English | EuropePMC | ID: covidwho-1651875

ABSTRACT

Introduction Coronavirus disease 2019 (COVID-19) is a new viral disease. Uncontrolled inflammation called “cytokine storm” is reported to contribute to disease pathogenesis as well as sepsis. We aimed to identify cytokines related to the pathogenesis of COVID-19 through a proteomics analysis of 1463 plasma proteins, validate these cytokines, and compare them with sepsis. Materials and Methods In a derivation cohort of 306 patients with COVID-19, 1463 unique plasma proteins were measured on days 1, 4, and 8. Cytokines associated with disease severity and prognosis were derived. In a validation cohort of 62 COVID-19 patients and 38 sepsis patients treated in the intensive care unit [ICU], these derived cytokines were measured on days 1 (day of ICU admission), 2-3, and 6-8 (maximum: 3 time points/patient). Derived cytokines were compared with healthy controls and between COVID-19 and sepsis patients, and the associations with prognosis were evaluated. The time to wean off mechanical ventilation (MV) was evaluated only for COVID-19. Results IL-6, amphiregulin, and growth differentiation factor (GDF)-15 were associated with disease severity and prognosis in the derivation cohort. In the validation cohort, IL-6 and GDF-15 were elevated in COVID-19 and sepsis on day 1, and the levels of these cytokines were higher in sepsis than in COVID-19. IL-6 and GDF-15 were associated with prognosis in sepsis. Cox proportional hazards model with time as a dependent covariate showed a significant relationship between plasma GDF-15 level and time to wean off MV (hazard ratio, 0.549 [95% confidence level, 0.382–0.789]). The GDF-15 level at ICU admission predicted late recovery. Conclusion GDF-15 and IL-6 derived from proteomics analysis were related with disease severity of COVID-19. Their values were higher in sepsis than in COVID-19 and were associated with prognosis in sepsis. In COVID-19 patients treated in the ICU, GDF-15 was associated with the time to wean off MV and better predicted late recovery.

20.
J Infect Chemother ; 28(4): 548-553, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1587254

ABSTRACT

INTRODUCTION: COVID-19 patients have been reported to have digestive symptoms with poor outcome. Ivermectin, an antiparasitic drug, has been used in COVID-19 patients. The objective of this study was to evaluate whether ivermectin has effects on gastrointestinal complications and ventilator-free days in ventilated patients with COVID-19. METHODS: COVID-19 patients who were mechanically ventilated in the ICU were included in this study. The ventilated patients who received ivermectin within 3 days after admission were assigned to the Ivermectin group, and the others were assigned to the Control group. Patients in the Ivermectin group received ivermectin 200 µg/kg via nasal tube. The incidence of gastrointestinal complications and ventilator-free days within 4 weeks from admission were evaluated as clinical outcomes using a propensity score with the inverse probability weighting method. RESULTS: We included 88 patients in this study, of whom 39 patients were classified into the Ivermectin group, and 49 patients were classified into the Control group. The hazard ratio for gastrointestinal complications in the Ivermectin group as compared with the Control group was 0.221 (95% confidence interval [CI], 0.057 to 0.855; p = 0.029) in a Cox proportional-hazard regression model. The odds ratio for ventilator-free days as compared with the Control group was 1.920 (95% CI, 1.076 to 3.425; p = 0.027) in a proportional odds logistic regression model. CONCLUSIONS: Ivermectin improved gastrointestinal complications and the number of ventilator-free days in severe COVID-19 patients undergoing mechanical ventilation. Prevention of gastrointestinal symptoms by SARS-Cov-2 might be associated with COVID-19 outcome.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Gastrointestinal Diseases , COVID-19/complications , Gastrointestinal Diseases/drug therapy , Humans , Ivermectin/adverse effects , Propensity Score , Respiration, Artificial , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL